Predicted Performance of Lorient Integrity Door Seals Applied to 35 mm Solid Core Doors

Project 202145

August 2002

File : 202145 R01 Predicted performance of 35 mm door fitted with seals
Prepared For:
Giles Newcombe
Lorient Australia Pty Ltd
8 Powells Road
Brookvale, N.S.W., 2100
Facsimile: 99073855
Prepared By
Peter Knowland
Peter R Knowland \& Associates Pty Ltd
tla PKA Acoustic Consulting
Suite 16, 401 Pacific Highway
ARTARMON, NSW, 2064
Telephone: (02) 9460 6824, Facsimile: (02) 94606823

Contents

\qquad
1 Introduction
2 Methodology .. 2
3 Steel Frame/Timber Frame.. 3
4 Sound Lock Doors .. 3

1 Introduction

Lorient Australia organized an extensive testing program of door panels and door seals at the Acoustic Facilities of RMIT University Melbourne. The testing was carried out in accordance with Australian Standard AS 1191-1985 and ISO140-3-1995. The test program carried out in November 2001 included test of three single door panels and a set of double doors. The tests included each of the door panels caulked in place and in the case of the 45 mm steel door and the 40 mm MDF faced particleboard door with various combinations of Lorient door seals. A 35mm MDF faced door was tested as a panel but not with door seals fitted. All the tests are covered by RMIT test reports 1211/01-093PD and 094PD.

The commission is to predict the acoustic performance of the 35 mm ply faced solid timber door fitted with Lorient door seal using the results determined for the 40 mm MDF faced door and the 45 mm steel door Assemblies also fitted with Lorient Integrity door seals.

The overall test program provided a wealth of information that allowed not only the required prediction to be made but also indicated that predictions on other door panels would be possible. The required predictions are given in this Report.

2 Methodology

There have been attempts by Lorient in their various testing programs carried out both at Sound Research Laboratories in the United Kingdom and RMIT in Australia to establish the performance of individual door seals. As well there has been research carried out at Rosenheim to evaluate the performance of individual door seals. Whilst this is important with product development, it is the door seal combination that is essential. The performance of a single door seal does not reveal the effect of gaps that may be formed when the entire system is put together.

The test results on the 40 mm door panel fully caulked in the test aperture, and then non-caulked panels fitted with various door seal combination in the same aperture showed very little deterioration of acoustic performance. It would have been easy to show the 35 mm door panel and its various door seal combinations as having the same acoustic performance as the caulked panel. However careful examination of the higher performing steel door revealed that the door seal performance was having a significant control on the acoustic performance of that door system. From these tests it seemed possible that the actual acoustic performance of the door seal combination could be mathematically determined using composite transmission loss calculations and using an edging technique to clarify door seal performance. A database was established and used to predict the performance of the door seal applied to the 35 mm solid core doors. These results are attached overleaf.

3 Steel Frame/Timber Frame

The original series of door tests were carried out using steel frames. Acoustic laboratory measurements carried out by this firm has revealed that providing the timber frame material is at least $600 \mathrm{~kg} / \mathrm{m}^{3}$ and is properly sealed within the door opening that the performance of the infill door is capable of at least Rw 40 . As the results contained in the attached tables are in the order of Rw 32 then timber frames can be considered to have the same performance as a steel frame.

4 Sound Lock Doors

The combination of a double door system to provide a sound lock achieves very high acoustic insulation. The addition of acoustic absorbent linings to the sound locks can also further enhance the sound insulation achieved. Experience has shown that a sound lock arrangement is a preferable way to achieve and maintain high acoustic performance with good traffic ability compared to that of a very high performance acoustic door.

The distance between the two sets of doors influences the performance of a sound lock. Some predictions are attached overleaf for a number of door configurations. The assumption is based on the doors being approximately 1 metre apart and that there is no acoustic absorption between the doors. The addition of acoustic absorbency in the form of carpet and acoustic wall linings can increase the values shown overleaf by 6 to 8 dB .

Sometimes a double set of single doors is used to provide increase in acoustic performance. These are typically used between hotel apartments. Our experience indicates that when the doors are on a common timber frame there is only limited gain in acoustic performance. It appears that the doors should be on separate frames that are not connected across the cavity wall and that the doors are at least 200 mm apart. The performance of these doors is very difficult to predict.
Predictions of acoustic performance based on tests carried out at RMIT University
35 MDF or Ply Faced Particleboard

Sound Lock Doors 35 MDF or Ply Faced Particleboard
Double Doors
Single Door 35mm MDF Faced Particle Board
Predictions of acoustic performance based on tests carried out at RMIT University

Doorset description	Seal Combination																				$\begin{array}{\|c\|} \hline \text { STC } \\ \hline 31 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline R_{m} \\ \hline 30 \\ \hline \end{array}$	$\begin{aligned} & c_{t r} \\ & -3 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{R_{w}+C_{4}}{27} \\ & \hline \end{aligned}$	
	Perimeter (head \& uprights)	Door bottom	100	125	160	200	250	315	400	500	630	800	1 K	1.25	1.6	2K	2.5	3.15	4K	5 K	STC	R_{w}	C_{4}	$\mathrm{R}_{\mathbf{w}}+\mathrm{C}_{4}$	
Medulm Duty systerns																									
Single 35 mm door (steel frame)	LE1212 Batwing	IS8011sis face fixed IS8011si face fixed	19	24	22	26	23	25	24	24		27	29	31	34	$\frac{35}{34}$	37	38	40	40		30 29	-3 -2		AM-12-11-ff AM-25-11-fi
Single 35 mm door (steel frame) Single 35 mm door (steel frame)	IS7025 IS7110	IS8011sis face fixed IS8011si face fixed	19	24	22	26	23	25	24	24	26	27	27	29	31	34	$\frac{36}{36}$	39	$\frac{38}{39}$	40	29	29	-2 -2	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	${ }_{\text {A }}^{\text {A M }}$ M-110-10-11-ff
Single 35mm door (steel frame)	IS7080	IS8011 1 sif face fixed	20	24	22	28	23	25	24	24	26	26	27	28	32	34	36	38	37	40	29	29	-2	27	AM-80-11-ff
Single 35mm door (steel frame)	LE1212 Batwing	IS8011si semi mortised	19	24	22	26	23	25	24	24	26	27	29	31	34	35	37	38	40	40	30	30	-3	27	AM-12-11-sm
Single 35mm door (steel frame)	IS7025	IS8011si semi mortised	19	24	22	26	23	25	24	24	26	27	27	29	31	34	36	39	39	40	29	29	-2	27	AM-25-11-sm
Single 35mm door (steel frame)	IS7110	IS8011si semi mortised	19	24	22	26	23	25	24	24	26	27	27	29	31	34	36	39	38	40	29	29	-2	27	AM-110-11-sm
Single 35mm door (steel frame)	IS7080	IS8011si semi mortised	20	24	22	26	23	25	24	24	26	26	27	28	32	34	36	38	37	40	29	29	-2	27	AM-80-11-sm
Singte 35mm door (steel frame)	LE1212 Batwing	IS8010si fully mortised	18	24	22	26	23	25	24	24	26	26	28	30	32	33	35	36	38	40	29	29	-3	28	AM-12-10
Single 36 mm door (steel frame)	IS7025	IS8010si fully mortised	18	24	22	26	23	25	24	24	26	26	28	29	30	33	35	38	38	38	29	29	-2	27	AM-25-10
Single 35mm door (steel frame)	IS7110	IS8010si fully mortised	18	24	22	26	23	25	24	24	26	26	28	29	30	33	35	37	37	38	29	29	-2	27	AM-110-10
Single 35 mm door (steel frame)	IS7080	IS8010si fully mortised	19	24	22	26	23	25	24	24	26	25	26	27	30	33	35	37	35	38	29	29	-2	27	AM-80-10.

NANANANAN品界NAN

ㅇলN

N															
	N	\pm	N	N	N	N	N	N	N	N	\mathfrak{N}	$\underset{\sim}{2}$	N	N	

N N N N N N N N N N N N N N N M

N	N		N	N	N	N	N	N	N	N	N	\bar{N}	N	N
N	N	N	N	N	N	N	N	N	N	N	$\underset{\sim}{2}$	\mathscr{N}	N	
9	¢	2	ค	∞	©	9	9	앋	¢	$\underset{\sim}{\infty}$	∞	∞	0	¢

